林芝碳源 脫氮除磷工藝中,好氧前端的厭氧段活性污泥里的聚磷菌需滿足釋放磷的功能,好氧段活性物中的菌種可以過量地攝取磷。系統內通過不斷的聚磷、釋磷后,廢水中的磷酸鹽被活性污泥吸附形成富磷污泥,再通過剩余污泥排放達到減少污水中磷含量。 污水處理中生物除磷三個階段,分別是除磷菌磷釋放、除磷菌過量攝取磷、富磷污泥排放。 污水中的有機物(碳源)在厭氧條件下發酵成為揮發性脂肪酸(VFAs),可以轉變為聚b-羥基丁酸,以聚b-羥基丁酸等有機顆粒的形式貯存于細胞內,以此同時就是降解聚磷酸鹽過程中的磷酸排出體外
林芝碳源 平時我們所用的培養基一個重要參數就是碳氮比,細菌的供能物質來自碳源,當氮源高時相對碳源低,細菌沒有充足能量合成蛋白質和進行生命活動,生長也就慢了。碳氮比在我們的種植、發酵過程中,是不可忽視的指標。若碳氮比適中,則微生物分解速度快,凈化能力就強。結合當前高密度養殖的實際情況不難看出,越是使用高蛋白的飼料,池塘中碳源的缺乏就越加嚴重,適時適量補充有機碳源就顯得更加必要。因為我們投喂的飼料中的蛋白質,能消化吸引的只有20%-25%,剩下的氮要靠我們的有益微生物和藻類吸引。但是有益微生物和藻類轉化掉這些東西需要消耗掉大量的碳源,像有益微生物適宜生長繁殖的碳氮比為(20-30):1,藻類則是6:1,兩者平衡起來,養殖水體較為理想的碳氮比為15:1。
林芝 碳源 醇的生物降解機理(以甲醇為例) 甲醇的生物降解機理同樣遵循三羧酸循環,研究表明甲醇在微生物作用下先轉化為甲醛,而后再被氧化為甲酸。甲醇微生物降解,生物代謝途徑的關鍵輔酶A,形成三羧酸循環和氧化磷酸化的通路生成CO2和H2O,并且釋放能量合成ATP。 3.1.3有機酸的生物降解機理(以檸檬酸為例) 大部分有機酸的降解途徑均遵循三羧酸循環,又名檸檬酸循環、Krebs循環。生物降解過程中的代謝產物為含有三個羧基的有機酸; 3.2各類碳源的生物降解途徑
林芝 碳源怎樣使用 單位換算對于碳源投加的計算,我一直強調其實就是單位的換算,這一步,很多小伙伴會算出錯,這個考驗的是高中的物理知識。不過,筆者把換算過程寫下來,記住這個比例以后就不會出錯了1PPM=1mg/L=1g/m^3=0.001kg/m^37、通用公式平常碳源投加公式都不詳細且不統一,本文給大家統一一下:1、除碳工藝:X=進水量*(20*N差值1-C差值)/碳源COD當量其中:X——除碳工藝碳源投加量N差值1——進水氨氮(或TKN)-排放要求的氨氮C差值——進水COD-出水COD2、脫氮工藝:Y=進水量*(5*N差值2-C差值)/碳源COD當量其中:Y——脫氮工藝碳源投加量N差值2——進水TN-排放要求的TNC差值——進水COD-出水COD