鋼板合金元素對回火轉變的影響 (1)提高回火穩定性 合金元素在回火過程中推遲馬氏體的分解和殘余奧氏體的轉變(即在較高溫度才開始分解和轉變), 提高鐵素體的再結晶溫度 使碳化物難以聚集長大,因此提高了鋼對回火軟化的抗力 即提高了鋼的回火穩定性。提高回火穩定性作用較強的合金元素有:V、Si、Mo、W、Ni、Co等。 (2)產生二次硬化 一些Mo、W、V含量較高的高合金鋼回火時 硬度不是隨回火溫度升高而單調降低 而是到某一溫度(約400℃)后反而開始增大 并在另一更高溫度(一般為550℃左右)達到峰值。這是回火過程的二次硬化現象 它與回火析出物的性質有關。當回火溫度低于450℃時 鋼中析出滲碳體; 在450℃以上滲碳體溶解 鋼中開始沉淀出彌散穩定的難熔碳化物Mo2C、W2C、VC等 使硬度重新升高 稱為沉淀硬化。回火時冷卻過程中殘余奧氏體轉變為馬氏體的二次淬火所也可導致二次硬化。

碳鋼的不足:
淬透性低。一般情況下,碳鋼水淬的 淬透直徑只有10mm-20mm。
強度和屈強比較低。如普通碳鋼Q235鋼的σs為235MPa,而低合金結構鋼16Mn的σs則為360MPa以上。40鋼的 σs /σb僅為0.43 遠低于合金鋼。回火穩定性差。由于回火穩定性差,碳鋼在進行調質處理時,為了保證較高的強度需采用較低的回火溫度,這樣鋼的韌性就偏低;為了保證較好的韌性,采用高的回火溫度時強度又偏低,所以碳鋼的綜合機械性能水平不高。
不能滿足特殊性能的要求。碳鋼在抗氧化、耐蝕、耐熱、耐低溫、耐磨損以及特殊電磁性等方面往往較差,不能滿足特殊使用性能的需求。
鋼板切割常用方法的對比
火焰切割原理:用可然氣體加助然氣體經燃燒來切割板材。優點:切割簡單、成本低。缺點:切割薄板易變形,切割材料品種有限。

中厚板主要應用于建筑工程、機械制造、容器制造、造船、橋梁建造等。還可以用來制造各種容器、爐殼、爐板、橋梁及汽車靜鋼鋼板、低合金鋼鋼板、造船鋼板、鍋爐鋼板、壓力容器鋼板、花紋鋼板、汽車大梁鋼板、拖拉機某些零件及焊接構件等。 厚度雖小,但橫向剪力所引起的變形和彎曲變形屬同一量級,在分析靜載荷下的應力和變形時,仍須考慮橫向剪切效應,垂直于板面方向的正應力則可忽略。在分析動載荷下的應力和變形時,除考慮橫向剪切效應外,還須考慮段的慣性力和阻尼力矩。中厚板在機械工業中早已有廣泛應用。
鋼板是用鋼水澆注,冷卻后壓制而成的平板狀鋼材。是平板狀,矩形的,可直接軋制或由寬鋼帶剪切而成。 鋼板按厚度分,薄鋼板<4毫米(薄0.2毫米),中厚鋼板4~60毫米,特厚鋼板60~115毫米。
鋼板按軋制分,分熱軋和冷軋。

鋼板縮小γ相區元素——亦稱鐵素體穩定化元素 主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等。它們使A3點上升 A4點下降(鉻除外 鉻含量小于7%時 A3點下降; 大于7%后A3點迅速上升) 從而縮小γ相區存在的范圍 使鐵素體穩定區域擴大。按其作用不同可分為完全封閉γ相區的元素(如Cr、Mo、W、V、Ti、Al、Si等)和部分縮小γ相區的元素(如B、Nb、Zr等)。 2. 形成碳化物合金元素按其與鋼中碳的親和力的大小 可分為碳化物形成元素和非碳化物形成元素兩大類。常見非碳化物形成元素有:Ni、Co、Cu、Si、Al、N、B等。它們基本上都溶于鐵素體和奧氏體中。常見碳化物形成元素有:Mn、Cr、W、V、Nb、Zr、Ti等(按形成的碳化物的穩定性程度由弱到強的次序排列),它們在鋼中一部分固溶于基體相中,一部分形成合金滲碳體 含量高時可形成新的合金碳化合物。

點擊查看旺宇鋼鐵(大興安嶺分公司)的【產品相冊庫】以及我們的【產品視頻庫】