較基體的硬度值有很大。測得高錳鋼基體摩擦系數(shù)在0.9左右,65錳鋼板熔覆后的FeCoNiCrMnTix涂層耐磨性有了一定程度的,且隨著Ti含量的增加,耐磨性隨之,熔覆后的FeCoNiCrMnTix涂層在Ti0.5的情況下摩擦系數(shù)和磨損量達(dá)到小值,分別為0.38和10.8mg。
經(jīng)時效處理后的FeCoNiCrMnTix涂層試樣的耐磨性整體上有了很大的,隨著Ti含量的增加,其耐磨性也成的趨勢。65mn錳冷軋鋼板其中時效處理后的FeCoNiCrMnTix涂層在Ti0.5的情況下摩擦系數(shù)和磨損量達(dá)到小值,分別為0.13和3.6mg。基體磨痕形貌為大量深且寬的滑溝,摩擦類型為磨粒磨損;熔覆后的涂層磨損形貌主要是較淺的滑溝,滑溝處有少量顆粒,且有層片狀脫落,磨損形式為粘著磨損與磨粒磨損。在時效處理后,磨損形貌有了明顯的改善,滑溝數(shù)量變少且更淺,磨粒基本消失。M13高錳鋼基體的沖擊韌性值經(jīng)實驗測得為148.33J/cm2,熔覆后的試樣沖擊韌性值在175J/cm2左右,相較于基體有所。
800°時效16小時后的試樣沖擊韌性值在155J/cm2左右,相較于時效前的試樣沖擊韌性值略下降,但經(jīng)時效后的不含Ti元素的試樣沖擊韌性值達(dá)到了182J/cm2。65錳鋼板高錳鋼基體和熔覆后的涂層斷口都含有大量韌窩,為韌性斷裂;時效處理后除Ti0.5試樣斷口含有解理和韌窩,為脆性斷裂和韌性斷裂之外,其他試樣斷口均由大量韌窩構(gòu)成,為韌性斷裂。整體上FeCoNiCrMnTix較大程度上提高了M13高錳鋼的沖擊韌性。
傳統(tǒng)高錳鋼在中低載荷工況下不具有優(yōu)勢,在其基礎(chǔ)上通過降低或增加碳錳元素含量研發(fā)出中錳和超65錳鋼板高錳鋼,在一定程度上彌補(bǔ)了其應(yīng)用中存在的不足。
本文對比研究了Mn8、Mn15及Mn18三種錳鋼的滑動和沖擊磨料磨損性能,分析了磨損機(jī)理。同時模擬礦井淋水腐蝕環(huán)境,探討了三種錳鋼的電化學(xué)腐蝕性能,論文得到以下主要結(jié)論:酸性礦井淋水腐蝕條件下,三種錳鋼表現(xiàn)出更負(fù)的腐蝕電位,酸性工況下耐腐蝕性能弱于堿性和中性腐蝕環(huán)境。酸、中、堿性礦井淋水腐蝕環(huán)境中,Mn8鋼的開路電位正(65mn錳冷軋鋼板),極化曲線外推擬合腐蝕電壓 ,腐蝕電流小,且容抗弧半徑小,其耐腐蝕性能優(yōu)于Mn15和Mn18耐磨鋼。滑動磨損實驗表明,三種錳鋼的摩擦系數(shù)均呈現(xiàn)先快速升高,后下降到一定的范圍趨于平穩(wěn)的變化趨勢,低載平均摩擦系數(shù)高于高載。相同磨損工況條件下,Mn8均具有 磨損失重,其抗滑動磨料磨損性能優(yōu)于Mn15和Mn18耐磨鋼。
三種耐磨鋼磨損層硬度分布均呈現(xiàn)梯度變化特征,Mn8磨損亞表層(50mm處)65錳鋼板硬度達(dá)到550HV,Mn15和Mn18分別為450HV和510HV,Mn8的加工硬化效果佳,Mn18則優(yōu)于Mn15。三種耐磨鋼干摩擦磨損機(jī)理主要表現(xiàn)為粘著磨損,伴有局部區(qū)域的疲勞剝落破壞,石英砂磨料磨損機(jī)理主要為磨粒磨損,表現(xiàn)形式為寬且深的犁溝和較大區(qū)域的疲勞剝落。沖擊磨料磨損實驗表明,隨沖擊功的增大,三種錳鋼的加工硬化能力均提高,磨損失重也明顯降低。1.5J沖擊功時,Mn18的磨損失重低于Mn8和Mn15;3.5J沖擊功時,Mn8具有 的磨損失重。Mn8和Mn18亞表層組織具有較高密度的孿晶,亞表層(50mm處)硬度分別達(dá)到50HRC和48HRC,其加工硬化效果明顯優(yōu)于Mn15,加工硬化層深度超過1.5mm。三種錳鋼磨損形式主要表現(xiàn)為鑿削磨損和不同程度疲勞剝落磨損。
65錳鋼板Mn8、Mn15磨損層亞結(jié)構(gòu)主要為位錯、孿晶及馬氏體,其耐磨強(qiáng)化機(jī)制為馬氏體相變復(fù)合強(qiáng)化機(jī)制。Mn18磨損層亞結(jié)構(gòu)出現(xiàn)大量位錯、孿晶外,未發(fā)現(xiàn)馬氏體相變,但出現(xiàn)Fe-Mn-C原子團(tuán)偏聚區(qū),其強(qiáng)化機(jī)制是通過位錯、孿晶和Fe-Mn-C原子團(tuán)強(qiáng)化
“以人為本、質(zhì)量保障、品質(zhì)服務(wù)、追求卓越”始終是公司立基建業(yè)的宗旨和目標(biāo)。眾鑫42crmo冷軋耐磨錳鋼板圓鋼金屬材料(徐州市分公司)本著“不斷進(jìn)取、與時俱進(jìn)”的思想時時激勵自己,用優(yōu)異卓著的“誠信”【45號耐磨板】產(chǎn)品積j i參與國內(nèi)外的市場競爭。
相應(yīng)的研究結(jié)果分別如下:相圖計算及膨脹儀熱模擬結(jié)果表明,65mn錳冷軋鋼板Al元素有效拓寬了臨界區(qū)溫度工藝窗口;DICTRA軟件對具有相同平衡態(tài)兩相比例臨界區(qū)奧氏體化過程的元素配分模擬顯示Al元素的添加顯著了合金元素(尤其是有利于錳鋁等置換元素)的擴(kuò)散效率,有助于殘留奧氏體中碳錳元素的富集與穩(wěn)定;高鋁添加導(dǎo)致δ鐵素體存留至室溫,降低了含鋁中錳TRIP鋼抗拉強(qiáng)度的同時了PLC現(xiàn)象;原位拉伸SEM中δ鐵素體內(nèi)大量交錯的位錯滑移帶證明了其良好的應(yīng)變協(xié)調(diào)性。
臨界區(qū)奧氏體化溫度通過調(diào)控臨界區(qū)奧氏體比例實現(xiàn)含鋁中錳鋼的多元強(qiáng)度級別設(shè)計。相較含鋁中錳TRIP鋼而言,以回火馬氏體組織為主要基體“骨架”的含鋁中錳IQ-TP鋼展現(xiàn)出更高的屈服強(qiáng)度;XRD和APT檢測到殘留奧氏體內(nèi)的碳錳元素富集、相界面處錳鋁元素的偏聚等現(xiàn)象證明了回火配分階段合金元素的局部平衡(LE)。65錳冷軋鋼板IQ--TP工藝下臨界區(qū)奧氏體化及回火過程兩階段的元素配分促進(jìn)了殘留奧氏體碳錳元素的富集,同時回火馬氏體組織切割細(xì)化了殘留奧氏體晶粒進(jìn)一步增加了其穩(wěn)定性,
65錳鋼板因而含鋁中錳IQ-TP鋼表現(xiàn)出優(yōu)異的力學(xué)性能。以4Mn1Al鋼為例,其熱軋IQ-TP鋼,抗拉強(qiáng)度達(dá)1425±43MPa,同時延伸率25.9±3.8%,均明顯優(yōu)于含鋁中錳TRIP鋼抗拉強(qiáng)度1345MPa,延伸率18.9%的 力學(xué)性能。而4Mn2Al熱軋IQ-TP鋼抗拉強(qiáng)度達(dá)1319±39MPa,延伸率27.4±1.1%。膨脹儀組織熱模擬及EPMA成分分析證實了含鋁中錳TRIP鋼冷軋退火組織的異常長大現(xiàn)象受控于錳鋁元素偏析下關(guān)鍵溫度區(qū)間的加熱速率。富Al貧Mn區(qū)抑制了奧氏體的形核,慢加熱速率為形變馬氏體的再結(jié)晶行為及晶粒長大提供了充分的動力學(xué)條件。超細(xì)晶冷軋含鋁中錳TRIP鋼由于其較小的位錯運動平均自由程,具有明顯的屈服平臺。異常長大的鐵素體帶提供了應(yīng)變初期較高的加工硬化率,有利于縮短材料的屈服平臺延伸率。而含鋁中錳IQ-TP鋼由于馬氏體組織及幾何必要位錯的存在呈現(xiàn)出連續(xù)屈服特征。含鋁中錳IQ-TP鋼的塑性主要源于軟相板條形態(tài)鐵素體的“潤滑劑”效應(yīng)以及殘留奧氏體的持續(xù)性TRIP效應(yīng)。